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Background

*ISPP is an enabling technologies for HEDS missions to Mars.

«CO, + 4 H, — CH, +2 H,0
Electrolysis 2H2 + 02

(Sabatier Reaction with Water Electrolysis)

*Supplemental oxygen production required
*2C0O2 —>2CO+02
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Sabatier Reactor / Water Electrolysis

2nd Generation SR/WE Test Bed

*Exothermic Reaction, must
be cooled
*Operating Temp: 300°C
*Requires Hydrogen
Transport and Storage
*CO2 Freezer
*Cryo-coolers and Storage
for LCH4 & LOX
(common bulkhead storage
tank?)
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Alternative Fuels?

m Methane requires 4 atoms of Hydrogen
m Lower hydrogen content improves ISPP
weight savings ratio

H/C Tons H2
m Methane

4 5.1
m Ethane 3 4.7
m Ethylene 2 3.4
m Benzene 1 2.1

Fuels and Oxidizer

m |[SPP saves weight by producing fuels
on Mars (5 — 8 tons over H2 brought)

m Producing fuels other than methane is
still in early development

m Producing oxygen saves 70+ tons for
MAYV oxidizer.

m Life support and mobile power further
increases savings.
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 Oxygen Production

m All systems use electrolysis to produce
oxygen
m Electrolysis of water from a reactor
m Direct electrolysis of CO2

m Electrolytes can be water, non-aqueous
liquids or solids.

m 4 e- / O2 molecule establishes current

m Operating voltage and temperature establish
efficiency and materials of construction.

PEM Cell Electrolyzer Schematic

*Nafion is preferred PEM

*Platinum group metals
used for electrodes,
deposited on PEM

OXYGEN HYDROGEN

Hy0% 1, 0,+2H +2¢” 2H 2dm Hy

ANODE / ‘\\ CATHODE

From Hamilton-Sundstrand

; * Uses Proton Exchange
Web site

Membrane (PEM) to
separate H2 and 02
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Electrolyzer Stack for Seawolf Submarine

*100Cells/Stack (7 Cells / Inch)
*50-kW (360 SCFH-H,)

*High Current Density (1000 A/Ft?)
*Over 100,000 hours operation

*H, & O, at 3000 psi

Courtesy of J. Kosek, Giner, Inc.

Zirconia Solid Electrolyte Cell

Figure 2. Principle of operation of a solid oxide electro-

I -
et Figure 3. Exploded view of an electrolyzer assembly.

Sridar, Gottmann, and Baird, AIAA Publication
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Zirconia Pros and Cons

*Direct electrolysis of CO2 with pure O2 separated.

*Good efficiency, about 1.5 V, similar to water

electrolysis.

*Very high operating temperatures, 800 - 1000°C.
*All ceramic construction in high temp zone.
*Fragile, easily cracked.

*Membrane failure could threaten entire output.

*Has been proposed for water vapor electrolysis

Possible Advantages for an Alternate System

*Lower temperatures
+<700°C...use metals in construction
+<270°C ...use polymers and elastomers
«< 31°C ...liquid CO2 as co-solvent
*Lower operating voltage...better efficiency
*More rugged construction, a robust assembly

NASA/CP—2003-212103 70



Reverse Water Gas Shift (RWGS)

*CO, + H, <> CO + H,0 (RWGS Reaction)

*Equilibrium constant is only 0.1, must remove
products to drive reaction to completion.

*Reactor requires pump, permeation filter and heat
exchangers to run.

*Electrolysis of water requires as much energy as
zirconia.

*Rugged and low temperature, but complex and heavy.
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RWGS Testﬁ Bed

Molten Carbonate Test Cell Design Anode ReaCtiOl’l

Cover Detail 2 C03_2 AN 2 C02 + 02+ 4e_

L+—Ni wire lead

Alumina tubes

Clearance for

518" tubes Cathode Reaction
Pt wire Anode 2 CO2 g CO + CO3-2

lumina Crucible
ind Cover

Porous Cathode
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Molten Carbonate Test Fixture

Molten Salt Results

*Li,0 in Chloride melt — Pure oxygen at anode
*Current decreased to zero over a few hours
*Carbonate formation at cathode is likely

*Carbonate electrolysis at anode yields 2:1, CO,/O,
*Sustained reaction for 7 days
*Minimal loss of O, production
*Temperature of operation: 550°C
*Cell voltage: ~ 0.8 Volts
*Platinum anode and cathode
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Non-Aqueous Solvents

*Potential Advantages
*Wide electrochemical window
*Low temperature operation
*CO, a potential co-solvent
*Solvents Surveyed & Results
*Acetonitrile, DMSO, Propylene Carbonate
*C-V curves show CO, reduction
*No evidence for oxide or carbonate solubility
*No oxygen generation at anode

quUId COZZ Electrochemical Reaction Vessel

Electrodes

Pressure Gauge

Product Vent —

CO2 inlet
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Pro and Cons of Liquid CO,

*Advantages:
*Very high electrode concentrations = High current density
*No porous gas cathode required = Simplified Cathode
*If carbon forms = Twice as much O2 out/ CO2 in

*Disadvantages:
*CO2 at high pressure mixed with electrode products
*If carbon forms = must remove carbon periodically
[f CO forms, separation technology is critical for life
support uses.
*No known cell compartment separators that would
transport carbonate, and simplify product separation.

Ionic Liquids

*What are they?

*Low melting point ionic salts. By using large anions
and cations, a low temperature melt with conductivity
similar to molten salts can be obtained.

*Examples include pyridinium and imidizolium cations
with anions such as PF,", BF,-, and many others.

*Desirable Properties

*Low temperature (-100 - 300°C).

*High conductivity (low [*R losses).

*Wide electrochemical window.

*Non-volatile.

*Miscible with or high solubility for CO,.
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Hurdles for lonic Liquids

. Find one that carbonate is soluble in, or carbonate is the anion.
(Working with Prof. R. Rogers @Univ. of Alabama)

*Confirm CO, reduction, preferably to CO.
*Confirm O, production at anode (2:1, CO,/O,).
*Confirm long term stability and balanced cell reactions.
*Minimize cell voltage.

*Electrode materials

*Minimize [*R drop = thin electrolyte film, highly conductive.
*Construct porous support for electrolyte (similar to carbonate).
*Construct cell manifolds and multi-cell assemblies.

Mobile Oxide Ceramic Membranes

*Similar to Zirconia, but lower temperature.

*Demonstrated on NO, electrolysis.

*Oxide 1on from CO, reduction stabilized by
Ceramic Lattice structure.

*Operating temperatures 500 - 700°C allows
use of metal manifolds and seals.

Working with Prof. E. Wachsman at
Univ. of Florida to prove feasibility.
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Oxygen Production Conclusions

*Oxide ions as an electrochemical intermediate are only
viable in mobile oxide ceramics.

eCarbonate is formed from CO2 reduction in molten salts,
and produces a 2:1 CO2/02 mixture at the anode.

*Other products of CO2 reduction do not produce O2 at
the anode.

*Carbonate melts and mobile oxide ceramics are probably
useable below 700°C for CO?2 electrolysis.

*Jonic liquids may be able to operate below 200°C if
one compatible with carbonate can be found.
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